HEAT CAPACITY OF AQUEOUS SOLUTIONS OF SULFURIC
ACID AT LOW TEMPERATURES

Yu. P. San'ko UDC 536,22

Results of an experimental determination of the specific heat of HyO—H,30, solutions at
low temperatures are presented and the heat capacity of a heterogeneous two-component
system is analyzed.

Results of an experimental study of the heat capacity of aqueous solutions of nitric acid at low tem-
peratures [1] revealed the existence of a negative value for the heat capacity at 78% HNO; and 22% H,O.
Data was presented [2] for the existence of two forms of ice and of a transition state between them in cer-
tain solutions. The phenomena observed are characterized by the authors as anomalous.

In an experimental determination of the specific heat of H,0 —H,S0, solutions, a dependence of the
heat capacity on temperature and on the relative content of components at consfant pressure was established
as well as the existence of negative values at 40 and 80% H,50,, 60 and 20% H,0. The dependence of specific
heat on temperature obtained with a continuous-heat adiabatic calorimeter [3] is shown in Figs. 1 and 2.

We define the heat capacity of an equilibrium, two-component heterogeneous thermodynamic system
at constant pressure (p = const) by the expression

I

as
Cp =T _a'T : (1)

Here and in the following, we understand the heat capacity Cp of a thermodynamic system to be, as is
conventional in the literature, the heat capacity of a thermodynamic system at constant pressure p and for
constant masses M; and M, of the components.

A thermodynamic system which is considered in accordance with the conditions on the definition
of the heat capacity Cp will be defined by a set of external parameters S, p, My, and M, where all param-
eters except the first — the entropy ~ are fixed and the entropy can vary freely. We consider a system
of equations which describes a two-component heterogeneous system where the defining external param-
eters will be S, p, My, and M, and the temperature T will be included in the unknown internal parameters.

In accordance with the analytical theory for multicomponent heterogeneous system [4], we write a
complete equation system which uniquely expresses the dependence of all internal parameters of this ther—
modynamic system on its external conditions:
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It is easy to verify that in the equation system_ (2)-(6), equality of the number of equations and the
number of unknowns — the internal parameters T, vj, X1j, Xsj, and mj (their number is 4r + 1) — is satis-
fied. The heat capacity of this thermodynamic heterogeneous system can be written in the following form:

d Emigi(T’ Uy Xyy)

= . . 7
C,=T7—= i=1,2j=12 ...,7, (
p AT ( ] )
where the heat capacity Cp is a function of the internal intensive parameters T, vj, Xij, Xoj and of the
extensive internal parameters mj (j=1, 2,...,r).

]

We represent the heat capacity Cp in a different form by expressing the differential of the expres-
sion in parentheses in Eq. (7) through the partial derivatives of the internal parameters v] » Xij, and mj
i=1,2;j=1,2,...,r)with respect to T. Equation (7) takes the form

N/ ds ds; do, N a5, de, - dm\ .
C.,:T}J my —1— --m; — J ‘Zm- z Y-, 1 =1,2, ..., 1) 8
T - ( or " e, A wd ony dT AT ) 0 ) ®)
In Eq. (8), each partial derivative of the function_Sj (T, \—73-, Xj» xzj) G=1, 2,...,r)is calculated

as usual for fixed values of all the variables on which 85 depends except for the one with respect to which
the derivative is being taken.

We first note that a thermodynamic system with a given set of external parameters S, p, My, M,,
, M, (n is the number of components) of which 2all are fixed except the entropy S (S can vary freely)
has all internal intensive parameters uniquely determined (fixed) [4], i.e., does not have intensive degrees
of freedom, in the cases where the number of phases r=n+1 and r=n + 2,

Thus the two-component thermodynamic system being considered has all internal intensive param-
eters uniquely fixed with free variation of the external extensive parameter S for the two cases of maximum

phase number (r = 3, 4).

From what has been said above follows an important conclusion — the heat capacity of this two-
component heterogeneous system is infinity for the phase numbers r = 3, 4 since the parameter T is fixed
during free variation of the external parameter S. A change in state of this thermodynamic system for
r = 3, 4 occurs under isothermal conditions.

We investigate the meaning of the derivatives dv /dT, dxij/dT, and dmy /dT i=1,2;j=1,2)in
Eq. (8). We write the system of thermodynamic equatlons (2)-(6) in differential form for the case of two
components and two phases:
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This system (9)-(17) of thermodynamic equations, which is given in differential form, interrelates
the total differentials dT, dvy, dvy, dxyy, dxyy, dxyq, dxyy, dmy, and dm,.

Solving the system of linear equations (9)-(17) with respect to each of the total derivatives d;j /dT,
dxij /dT, and dm; /dT (=1, 2;j=1,2), we obtain the following relations:

du; Ay, 1 2) 1
= =1, ’ 8)
di Mo, 5 =1,2) (19)
A 3
daT T
dm; A,,,j )
7 =1, 2), (20)
ar A, a

where A, A‘7j’ AXij’ and Am]. i=1,2;j=1, 2) are determinants which are obtained from the determinant

of the system (9)-(17) by replacement of the column made up of the coefficients corresponding to the sub-
scripts in AT, A‘7j’ AXij’ and Am]- by a column made up of the free terms.

The heat capacity Cp of a two-component, single-phase thermodynamic system is obtained from
Eq. (8) by omitting the last two terms, which are zero:

/ a}) ] " s dy (
Cp:Tm( 57 ;-:—Tm (\-—%-)T—-—d,r . (21)

\ /9

It is clear thai the first term in Eq. (21) is the heat capacity of this single-phase thermodynamic
system at constant volume and constant masses of the components — Cy — and the difference between Cp
and Cy is given by the second term in Eq. (21) and physically reflects the work done by the thermodynamic
system during its expansion. In the latter case, the total derivative dv /dT is easily found from Eq. (11) by
omitting the last two terms, which are zero,

(—Z;—);dT - (3—7’1> dv=0. (22)

Knowing that (9p /0T)5/(®p /0v) = —(Bv /dT)p, we find that

dv ‘_(?E’_) _ (23)
dT T ),

The physical significance of the first two terms in Eq. (8) for the heat capacity Cp of a two-phase,
two-component system is similar to the terms in Eq. (21) for the heat capacity Cp of a single-phase, two-
component system. The third term in Eq. (8) denotes the change in heat capacity of a thermodynamic sys-
tem resulting from a change in the composition of the phase components. The last term in Eq. (8) repre-
sents the portion of the heat capacity associated with change in mass of a phase.

We analyze the experimentally obtained relations for the specific heat of H,0—H,SO, solutions and
set up laws governing the occurrence of heterogeneous processes. Unfortunately, a quantitative description
of a heterogeneous system is impossible because the explicit form of the majority of thermodynamic rela-
tions is unknown. There is no definite form for the phase diagram. .

An H,C—H,y80; solution has three azeotropic points for the solid —liquid phase transition correspend-
ing to each of the hydrates [5]: the first hydrate H,SO,- H,0 (81.6% solution of H,SO,) has the mp +8.5°C,
the second hydrate H,SO, - 2H,0 (69.0% solution of HySO,) has the mp —39°C, and the third hydrate Hy,80,-
4H,0 (57.7% solution of H,SOy) has the mp —28°C; the mp of H,SO, is +10,4°C.

We investigate the behavior of the heat capacity of an H,0~H,S0O, solution in the portion of the phase
diagram from pure water to the hydrate H,S0, - 4H,0. The curves for the specific heat of 10, 20, 30, 40,
50, and 60% aqueous solutions of H,S80, point to the existence of an isotherm for the eutectic transition
(~=60°C) with the exact eutectic at 32-37% H,SO; solution from which the liquidus line in the phase diagram
runs to the melting point of ice and of the hydrate H,SO, - 4H,0 (azeotropic point).
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Fig. 1. Specific heat of water (1) and 10 (2), 20 (3), and 30% (4) aqueous solutions of sulfuric
acid in the range —196 to +20°C; C, kJ /kg - deg; t, °C.

Fig. 2. Specific heat: a) 40 (1), 50 (2), 60 (3), and 70% aqueous solutions; b) 80 (1), 90 (2),
and 95% (3) aqueous solutions of HySO, in the range —196 to +20°C.

Such behavior of a thermodynamic system in the portion of the phase diagram from water to the
hydrate H,SO, - 4H,0 is caused by peaks in heat capacity (Figs. 1, 2a). The first peaks in the heat capacity
at —60°C correspond to a phase transition on the isotherm for the eutectic transition, and the displaced
second peaks at higher temperatures for compositions other than the eutectic correspond to phase transi-
tions on the liquidus line. The height of the transition peaks on the isotherm for eutectic transition in-
crease as one approaches the eutectic point, and the height of the shifted peaks increases toward the azeo-
tropic points at which phase transition occurs for constant phase composition. Azeotropic compositions in
the solid state form a new phase — the hydrates.

From what has been said, one can draw an analogy between the portions of the phase diagrams for
H,0 —HNO; solutions [6] and H,0—H,80, solutions from water to the first azeotropic composition. One can
suppose that the H,0 —H,SO, phase diagram in all portions between the lines of azeotropic composition is
a eutectic system for the liquid — solid transition and is similar to the HyO —HNO; diagram. From the
experimentally obtained values for heat capacity, it is impossible to make a complete analysis of the be-
havior of an H,O —H,S0, solution between azeotropic compositions in the remaining three portions of the
diagram.

For the phase transition on the isotherm for eutectic transition, three phases coexist: two solid
phases (two hydrates or a hydrate and component) and a liquid phase. In this case a two-component hetero-
geneous system does not have intensive degrees of freedom (T = const). When this system is heated, which
corresponds to an experiment for the determination of heat capacity, one of the solid phases on the eutectic
isotherm completely transforms into a liquid up to eutectic composition, and with further increase in tem-
perature phase transition occurs on the solidus where the system has two coexisting phases and an inten-
sive degree of freedom. The heat capacity of this thermodynamic system is described by Eq. (8).
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Equation (8), which was obtained on the basis of thermodynamic laws, describes the behavior of the
heat capacity Cp of HyO—H,SO, solutions (Figs. 1, 2) when two phases are present. The heat capacity Cp
on the isotherm for eutectic transition (T = const), where a shift of three-phase equilibrium occurs, is
infinite. Equation (21) for the heat capacity Cp of a single-phase solution is trivially obtained from Eq. (8)
without the last two terms. The experimentally observed negative values of the heat capacity are also
described by Eq. (8). It is clear that the value of the first term is always positive and the values of the last
three terms may differ. For example, if the value of the fourth term has a negative sign and its absolute
value is greater than the sum of the other terms, the total heat capacity of the system then takes on a
negative value. The fourth term in Eq. (8) has a negative value in the case where a supercooled phase is
transformed by heating into a phase with a lower temperature state and heat is released in the phase tran-
sition,

NOTATION
C is the heat capacity;
p is the pressure;
T is the absolute temperature;
S is the entropy;
Hij is the chemical potential of the i-th component of the j~th phase;
M;j is the mass of the i-th component of thermodynamic system;
x_rj is the specific volume of the j-th phase;
Xjj is the concentration of the i-th component in the j-th phase;
mj is the mass of the j-th phase;
85 is the specific entropy of the j-th phase;

r,n are the number of phases and components of thermodynamic system.
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