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Resul ts  of an experimental  determination of the specific heat of H20-H2SO 4 solutions at 
low tempera tures  are  presented and the heat capacity of a heterogeneous two-component 
sys tem is analyzed. 

Results  of an experimental  study of the heat capacity of aqueous solutions of nitric acid at low te rn '  
pe ra tu res  [1] revealed the existence of a negative value for the heat capacity at 78% HNO 3 and 22% H20. 
Data was presented [2] for the existence of two forms  of ice and of a transit ion state between them in c e r -  
rain solutions. The phenomena observed are  charac te r ized  by the authors as anomalous.  

In an experimental  determination of the specific heat of H20-H2SO 4 solutions, a dependence of the 
heat  capacity on tempera ture  and on the relative content of components at constant p ressu re  was established 
as well as the existence of negative values at 40 and 80% H2SO 4, 60 and 20% H20. The dependence of specific 
heat on tempera ture  obtained with a continuous-heat  adiabatic ca lo r ime te r  [3] is shown in Figs.  t and 2. 

We define the heat capacity of an equilibrium, two-component heterogeneous thermodynamic sys tem 
at constant p re s su re  (p = const) by the express ion 

dS 
C~,:  T - - -  (1) 

dT  

Here and in the following, we understand the heat capacity Cp of a thermodynamic sys tem to be, as is 
conventional in the l i tera ture ,  the heat capacity of a thermodynamic system at constant p r e s su re  p and for 
constant  m a s s e s  M 1 and M 2 of the components.  

A thermodynamic sys tem which is considered in accordance with the conditions on the definition 
of the heat capaci ty Cp will be defined by a set of external  pa rame te r s  S, p, M1, and M 2 where all p a r a m -  
e ters  except the f i rs t  - the entropy - are fixed and the entropy can vary freely. We consider  a sys tem 
of equations which descr ibes  a two-component heterogeneous system where the defining external  p a r a m -  
e te rs  will be S, p, M1, and M 2 and the tempera ture  T will be included in the unknown internal pa ramete rs .  

In accordance with the analytical  theory for  multicomponent heterogeneous sys tem [4], we write a 
complete equation sys tem which uniquely expresses  the dependence of all internal pa rame te r s  of this the r -  
modynamic sys tem on its external  conditions: 

[|il ( T ,  ~1' ")(11, )"21) . . . .  - ,ui,, (T, ~,., xl,,, ::~) (i = 1,2), (2) 

P l  ( T ,  ~,, X l l  , .v2i ) - -  . . . = P r  ( r ,  [ ' r ,  X l r ,  X2r) = P ,  ( 3 )  

r 

' - .r2~) : :  S ,  ( 4 )  "% m~s~ (T, vj, x~r, 
] - q  

r 

~mjx~j -: M~ (i == 1, 2), (5) 
:=1 

x i j = t  ( ]=  1,2 . . . . .  r). (6) 
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It is e a s y  to ve r i fy  that  in the equat ion s y s t e m  (2)-(6), equal i ty  of  the n u m b e r  of equat ions  and the 
n u m b e r  of  unknowns - the in te rna l  p a r a m e t e r s  T, vj,  xij ,  X2j , and mj (their n u m b e r  is 4 r  + 1) - is s a t i s -  
fied. The hea t  capac i ty  of  this t h e r m o d y n a m i c  he t e rogeneous  s y s t e m  can  be wr i t t en  in the fol lowing f o r m :  

r 

(7) 
Cp = T ]=1 (i = 1, 2; j := 1 2 . . . . .  r), 

dT 

w h e r e  the hea t  c apac i ty  Cp is a funct ion of the in te rna l  intensive p a r a m e t e r s  T,  vj ,  xl j ,  x2j and of the 
ex tens ive  in te rna l  p a r a m e t e r s  mj (j = 1, 2 . . . . .  r). 

We r e p r e s e n t  the hea t  capac i ty  Cp in a d i f fe ren t  f o r m  by e x p r e s s i n g  the d i f fe ren t ia I  of  the e x p r e s -  
s ion in p a r e n t h e s e s  in Eq. (7) th rough  the pa r t i a l  de r iva t i ve s  of  the in te rna l  p a r a m e t e r s  vj ,  xij ,  and mj 
(i = 1, 2; j = 1, 2 . . . . .  r) with r e s p e c t  to T. Equat ion (7) takes  the f o r m  

C~; = T ~ , d  ~ y ~ -  -l- my avy ~ + ~ tny ~ dT -i-s; dT ] ( ] = 1 , 2  . . . . .  r). (8) 
i=~ i=: 

In Eq. (8), each  pa r t i a l  de r iva t ive  of the funct ion s j (T,  vj ,  xi j ,  x2j) 0 = 1, 2 . . . . .  r) is  ca lcu la ted  
as  usual  fo r  fixed va lues  of al l  the v a r i a b l e s  on which  sj depends  except  fo r  the one with r e s p e c t  to which 

the de r iva t ive  is being taken. 

We f i r s t  note that  a t h e r m o d y n a m i c  s y s t e m  with a given s e t  of ex te rna l  p a r a m e t e r s  S, p,  M i, M2, 

. . . .  M n (n is the n u m b e r  of  componen t s )  of which al l  a r e  fixed except  the en t ropy  S (S can  v a r y  f ree ly)  
has  all  in te rna l  in tens ive  p a r a m e t e r s  uniquely d e t e r m i n e d  {fixed) [4], i .e . ,  does  not have in tens ive  d e g r e e s  
of  f r e e d o m ,  in the c a s e s  whe re  the n u m b e r  of phase s  r = n + 1 and r = n + 2. 

Thus  the two-componen t  t h e r m o d y n a m i c  s y s t e m  being c o n s i d e r e d  has  al l  in te rna l  in tens ive  p a r a m -  
e t e r s  uniquely fixed with f r ee  va r i a t i on  of the ex te rna l  ex tens ive  p a r a m e t e r  S for  the two c a s e s  of m a x i m u m  

phase  n u m b e r  (r = 3, 4). 

F r o m  what  has  been  said above follows an impor t an t  conc lus ion  - the heat  capac i ty  of  this two-  
componen t  h e t e r o g e n e o u s  s y s t e m  is infinity for  the phase  n u m b e r s  r = 3, 4 s ince  the p a r a m e t e r  T is fixed 
dur ing  f ree  va r i a t i on  of  the ex t e rna l  p a r a m e t e r  S. A change  in s ta te  of this  t h e r m o d y n a m i c  s y s t e m  fo r  
r = 3, 4 o c c u r s  under  i s o t h e r m a l  condi t ions .  

We inves t iga te  the mean ing  of  the de r i va t i ve s  d v j / d T ,  d x i j / t i T ,  and d m j / d T  (i = 1, 2; j = 1, 2) in 
Eq. (8). We wr i t e  the s y s t e m  of t h e r m o d y n a m i c  equat ions  (2)-(6) in d i f fe ren t ia l  f o r m  for  the case  of  two 

componen t s  and two phases :  

, a~ l t  o~,t:l apt ,  a~:.2 a~t:2 Ol-h2 O~lll dT O~=-tll dvl -i- dXll + dx21 dT dv~ - -  - -  dxv, - - -  - -  dx~z = O, 
aT avl Ox:: Oxo_~ aT  Ov 2 OXI2 OK22 

O~t. n 0~% 1 O~%o. O,aoo dv,~ 0~12 aP22 O~t~l dT i OP= 21 d-v 1 ! dx l : - ! -  d : % - -  t i T - -  ='" dx:2 dx~., = O, 
aT Ov 1 Ox:: ax.,.: aT av2 ax:~ a.v~., 

Op~ d T - -  Op_~ dv~- i -  Opl d x n - -  aP--- !-~ d x o ~ = O ,  
aT Or: Ox:: " 

Op~ 
- -  dT Op.,_ dv~ i dx,o . . . . .  

Or.,. axe2 
OP2 
aT 

0X21 

aX22 
dx,2.2 = O, 

as, a~, 
, as1 d51 rnl dxn  + ml dx2z ' Os: dT  -~ m l  - -  -',- 

m: a-v- o~: ax:: ~ -: 

Ks, + m 2 0 s 2  dx ~ -}- m~ dx2~ + s-ldml @s.dm., = dS, 

m:dx:l + m2dx12 -t- xndm:  - -  x12dm2 = O, 

mldx~: -~- m2dx~. -i- x21dn21 @ x22dm~ = O, 

dxx: -[- dx~: = O, 

O~ - m 2 0 s 2  dT -:- mo _ .  dr.,-i- 
OT Ov.,. 

dxxz -i-~ dx~ = O. 

(9) 

(10) 

( i i )  

(12) 

(13) 

(14) 

(15) 
(16) 
(17) 
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This sys tem (9)-(17) of thermodynamic equations,  which is given in di f ferent ia l  fo rm,  in t e r re l a t e s  
the total d i f ferent ia ls  dT, dvl, dv 2, dxll,  dxi2, dx21, dx22, dml,  and dm 2. 

Solving the sys tem of l inear  equations (9)-(17) with respec t  to each of the total der iva t ives  d v j / d T ,  
d x i j / d T ,  and d m j / d T  (i = 1, 2; j = 1, 2), we obtain the following relat ions:  

d% 
dY -- ~ ( ]=1 '2) '  

dx u __ h~j ( i = 1 ,  2; ] = 1 ,  2), 
dT AT 

dm] A,nj 

dT ~T 
(i = i ,  2), 

(18) 

(19) 

(20) 

where  A T, Avj, Axij, and Amj 

of the sys tem (9)-(17) by rep lacement  of the column made up of the coefficients  corresponding to the sub-  
scr ip ts  in AT, A~Tj, Axij, and Amj by a column made up of the f ree  t e rms .  

The heat  capacity Cp of a two-component,  s ingle-phase thermodynamic sys tem is obtained from 
Eq. (8) by omitting the last  two t e rms ,  which are  zero:  

(i = 1, 2; j = 1, 2) are  de terminants  which a re  obtained f rom the determinant  

C~=Tm~, OT i F "  Tm (-OU-, ) r  ~ -  (2t) 

It is c l e a r  that the f i r s t  t e rm  in Eq. (21) is the heat  capacity of this s ingle-phase thermodynamic 
sys tem at constant  volume and constant  masses  of the components  - C v - and the dif ference between Cp 
and Cv is given by the second te rm in Eq. (21) and physical ly re f lec ts  the work done by the thermodynamic 
sys tem during its expansion. In the la t te r  case ,  the total der ivat ive d v / d T  is easi ly  found f rom Eq. (11) by 
omitting the last  two t e rms ,  which a re  ze ro ,  

' Op 

Knowing that (Op/DT)v/(Op/av) T = - (Or/OT)p,  we find that 

d : 5 -  O. (22) 

dT \ OT ]p" (23) 

The physical  significance of the f i r s t  two t e rm s  in Eq. (8) for  the heat capacity Cp of a two-phase,  
two-component  sys tem is s imi la r  to the t e rms  in Eq. (21) for  the heat capacity Cp of a s ingle-phase,  two- 
component system. The third t e rm in Eq. (8) denotes the change in heat capacity of a thermodynamic sy s -  
tem resul t ing from a change in the composit ion of the phase components.  The last  t e rm in Eq. (8) r e p r e -  
sents the port ion of the heat capacity associa ted with change in mass  of a phase. 

We analyze the exper imenta l ly  obtained re la t ions  for the specific heat of H20-H2SO 4 solutions and 
set  up laws governing the occur rence  of heterogeneous p rocesses .  Unfortunately,  a quantitative descr ipt ion 
of a heterogeneous sys tem is impossible  because the explici t  form of the major i ty  of thermodynamic r e l a -  
tions is unknown. There  is no definite form for  the phase diagram. 

An H20--H2SO 4 solution has three azeotropic  points for  the s o l i d - l i q u i d  phase t ransi t ion co r r e s pond -  
ing to each of the hydrates  [5]: the f i r s t  hydrate  H2SO4.H20 (81.6% solution of H2SO4) has the mp +8.5~ 
the second hydrate  H2SO4" 2H20 (69.0% solution of H2SO4) has the mp -39~ and the third hydrate H2SO 4. 
4H20 (57.7% solution of H2SO4) has the mp -28~ the mp of H2SO 4 is +10.4~ 

We investigate the behavior  of the heat capacity of an H20--H2SO 4 solution in the port ion of the phase 
diagram f rom pure wa te r  to the hydrate  H2SO4.4H20. The curves  for  the specific heat of 10, 20, 30, 40, 
50, and 60% aqueous solutions of H2SO 4 point to the existence of an i so therm for  the eutectic t ransi t ion 
(~-60~ with the exact  eutect ic  at 32-37% H2SO 4 solution f rom which the liquidus line in the phase diagram 
runs to the melt ing point of ice and of the hydrate  H2SO 4 �9 4H20 (azeotropic point). 
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Fig. 1. Specific heat  of wa t e r  (1) and 10 (2), 20 (3), and 30% (4) aqueous solutions of sulfuric  
acid in the range  -196  to +20~ C, k J / k g . d e g ;  t, ~ 

Fig. 2. Specific heat:  a) 40 (1), 50 (2), 60 (3), and 70% aqueous solutions;  b) 80 (1), 90 (2), 
and 95% (3) aqueous solutions of H2SO 4 in the range -196  to +20~ 

Such behavior  of a the rmodynamic  s y s t e m  in the port ion of the phase  d iagram f rom w a t e r  to the 
hydrate  H2SO 4 �9 4H20 is caused by peaks  in heat  capaci ty  (Figs. 1, 2a). The f i r s t  peaks  in the heat  capaci ty  
at  -60~ co r respond  to a phase  t rans i t ion on the i so the rm for  the eutect ic  t rans i t ion,  and the displaced 
second peaks  at  h igher  t e m p e r a t u r e s  for  composi t ions  other  than the eutect ic  cor respond  to phase t r a n s i -  
t ions on the liquidus line. The height of the t rans i t ion peaks  on the i so the rm for  eutectic t rans i t ion in-  
c r e a s e  as one approaches  the eutect ic  point,  and the height of the shifted peaks  i n c r e a s e s  toward the a z e o -  
t ropic  points at  which phase t rans i t ion occurs  for  constant  phase  composit ion.  Azeotropic  composi t ions  in 
the solid s ta te  fo rm a new phase - the hydra tes .  

F r o m  what has been said,  one can draw an analogy between the por t ions  of the phase d i ag rams  for  
H 2 0 - H N O  3 solutions [6] and H20-H2SO 4 solutions f rom wa te r  to the f i r s t  azeotropic  composi t ion.  One can 
suppose that the H20 -H2SO 4 phase  d i ag ram in al l  por t ions  between the lines of azeot ropic  composi t ion is 
a eutect ic  s y s t e m  for  the l i q u i d - s o l i d  t rans i t ion and is s i m i l a r  to the H 2 0 - H N O  3 d iagram.  F rom the 
exper imenta l ly  obtained values for  heat  capac i ty ,  it is imposs ib le  to make a comple te  ana lys i s  of the be -  
hav io r  of an H20-H2S O 4 solution between azeot ropic  composi t ions  in the remain ing  three  por t ions  of the 
d iagram.  

F o r  the phase t rans i t ion on the i so the rm for  eutect ic  t rans i t ion ,  three  phases  coexist :  two solid 
phases  (two hydra tes  or  a hydrate  and component)  and a liquid phase.  In this case  a two--component h e t e r o -  
geneous s y s t e m  does not have intensive deg rees  of f r eedom iT = const).  When this sy s t em is heated,  which 
co r r e sponds  to an expe r imen t  fo r  the de te rmina t ion  of heat  capac i ty ,  one of the solid phases  on the eutectic 
i so the rm  comple te ly  t r a n s f o r m s  into a liquid up to eutect ic  composi t ion,  and with fu r the r  i nc rease  in t e m -  
p e r a t u r e  phase  t rans i t ion occurs  on the solidus where  the sy s t em has two coexis t ing phases  and an inten-  
s ive degree  of f reedom.  The heat  capaci ty  of this thermodynamic  sy s t em is descr ibed  by Eq. (8). 
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Equation (8), which was obtained on the bas is  of the rmodynamic  laws,  de sc r ibe s  the behavior  of the 
heat  capaci ty  Cp of H20-H2SO4 solutions (Figs. 1, 2) when two phases  a r e  presen t .  The heat  capaci ty  Cp 
on the i so the rm for  eutect ic  t rans i t ion  (T = const) ,  where  a shift  of t h r ee -phase  equi l ibr ium occurs ,  is 
infinite. Equation (21) fo r  the heat  capaci ty  Cp of a s ing le -phase  solution is t r iv ia l ly  obtained f rom Eq. (8) 
without the las t  two t e r m s .  The exper imen ta l ly  obse rved  negat ive values  of the heat  capaci ty  a r e  a lso  
desc r ibed  by Eq. (8)o It is c l e a r  that the value of the f i r s t  t e r m  is a lways posi t ive  and the values  of the las t  
th ree  t e r m s  may  differ .  F o r  example ,  if  the value of the fourth t e r m  has  a negative sign and i ts  absolute 
value is g r e a t e r  than the sum of the o ther  t e r m s ,  the total  heat  capaci ty  of the sys t em then takes on a 
negat ive  value. The fourth t e r m  in Eq. (8) has a negative value in the ca se  where  a supercooled phase  is 
t r a n s f o r m e d  by heating into a phase  with a lower t e m p e r a t u r e  s ta te  and heat  is r e l eased  in the phase t r a n -  
sition. 

C 

P 
T 
S 

Pij 
_Mi 
vj 
xij 
mj 
sj 
r , n  

N OTA TION 

is the heat  capaci ty;  
is the p r e s s u r e ;  
is the absolute t empe ra tu r e ;  
is the entropy;  
is the chemica l  potential  of the [-th component  of the j - t h  phase;  
is the m a s s  of the i - th  component  of the rmodynamic  sys tem;  
is the specif ic  volume of the j - th  phase;  
is the concent ra t ion  of the i - th  component  in the j - th  phase;  
is the m a s s  of the j - th  phase;  
is the specif ic  ent ropy of the j - th  phase;  
a r e  the number  of phases  and components  of the rmodynamic  sys tem.  
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